Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
Sci Total Environ ; 892: 164456, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: covidwho-2328296

RESUMO

The hourly Himawari-8 version 3.1 (V31) aerosol product has been released and incorporates an updated Level 2 algorithm that uses forecast data as an a priori estimate. However, there has not been a thorough evaluation of V31 data across a full-disk scan, and V31 has yet to be applied in the analysis of its influence on surface solar radiation (SSR). This study firstly investigates the accuracy of V31 aerosol products, which includes three categories of aerosol optical depth (AOD) (AODMean, AODPure, and AODMerged) as well as the corresponding Ångström exponent (AE), using ground-based measurements from the AERONET and SKYNET. Results indicate that V31 AOD products are more consistent with ground-based measurements compared to previous products (V30). The highest correlation and lowest error were seen in the AODMerged, with a correlation coefficient of 0.8335 and minimal root mean square error of 0.1919. In contrast, the AEMerged shows a larger discrepancy with measurements unlike the AEMean and AEPure. Error analysis reveals that V31 AODMerged has generally stable accuracy across various ground types and geometrical observation angles, however, there are higher uncertainties in areas with high aerosol loading, particularly for fine aerosols. The temporal analysis shows that V31 AODMerged performs better compared to V30, particularly in the afternoon. Finally, the impacts of aerosols on SSR based on the V31 AODMerged are investigated through the development of a sophisticated SSR estimation algorithm in the clear sky. Results demonstrate that the estimated SSR is significant consistency with those of well-known CERES products, with preservation of 20 times higher spatial resolution. The spatial analysis reveals a significant reduction of AOD in the North China Plain before and during the COVID-19 outbreak, resulting in an average 24.57 W m-2 variation of the surface shortwave radiative forcing in clear sky daytime.


Assuntos
Poluentes Atmosféricos , COVID-19 , Humanos , Poluentes Atmosféricos/análise , Incerteza , Aerossóis e Gotículas Respiratórios , Surtos de Doenças , Monitoramento Ambiental/métodos
2.
Atmospheric Chemistry and Physics ; 22(8):5495-5514, 2022.
Artigo em Inglês | ProQuest Central | ID: covidwho-1811067

RESUMO

PM2.5, generated via both direct emission and secondary formation, can have varying environmental impacts due to different physical and chemical properties of its components. However, traditional methods to quantify different PM2.5 components are often based on online or offline observations and numerical models, which are generally high economic cost- or labor-intensive. In this study, we develop a new method, named Multi-Tracer Estimation Algorithm (MTEA), to identify the primary and secondary components from routine observation of PM2.5. By comparing with long-term and short-term measurements of aerosol chemical components in China and the United States, it is proven that MTEA can successfully capture the magnitude and variation of the primary PM2.5 (PPM) and secondary PM2.5 (SPM). Applying MTEA to the China National Air Quality Network, we find that (1) SPM accounted for 63.5 % of the PM2.5 in cities in southern China on average during 2014–2018, while the proportion dropped to 57.1 % in the north of China, and at the same time the secondary proportion in regional background regions was ∼ 19 % higher than that in populous regions;(2) the summertime secondary PM2.5 proportion presented a slight but consistent increasing trend (from 58.5 % to 59.2 %) in most populous cities, mainly because of the recent increase in O3 pollution in China;(3) the secondary PM2.5 proportion in Beijing significantly increased by 34 % during the COVID-19 lockdown, which might be the main reason for the observed unexpected PM pollution in this special period;and finally, (4) SPM and O3 showed similar positive correlations in the Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD) regions, but the correlations between total PM2.5 and O3 in these two regions, as determined from PPM levels, were quite different. In general, MTEA is a promising tool for efficiently estimating PPM and SPM, and has huge potential for future PM mitigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA